Bidirectional Parallel Fiber Plasticity in the Cerebellum under Climbing Fiber Control

نویسندگان

  • Michiel Coesmans
  • John T. Weber
  • Chris I. De Zeeuw
  • Christian Hansel
چکیده

Cerebellar parallel fiber (PF)-Purkinje cell (PC) synapses can undergo postsynaptically expressed long-term depression (LTD) or long-term potentiation (LTP) depending on whether or not the climbing fiber (CF) input is coactivated during tetanization. Here, we show that modifications of the postsynaptic calcium load using the calcium chelator BAPTA or photolytic calcium uncaging result in a reversal of the expected polarity of synaptic gain change. At higher concentrations, BAPTA blocks PF-LTP. These data indicate that PF-LTD requires a higher calcium threshold amplitude than PF-LTP induction and suggest that CF activity acts as a polarity switch by providing dendritic calcium transients. Moreover, previous CF-LTD induction changes the relative PF-LTD versus -LTP induction probability. These findings suggest that bidirectional cerebellar learning is governed by a calcium threshold rule operating "inverse" to the mechanism previously described at other glutamatergic synapses (BCM rule) and that the LTD/LTP induction probability is under heterosynaptic climbing fiber control.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reciprocal Bidirectional Plasticity of Parallel Fiber Receptive Fields in Cerebellar Purkinje Cells and Their Afferent Interneurons

The highly specific relationships between parallel fiber (PF) and climbing fiber (CF) receptive fields in Purkinje cells and interneurons suggest that normal PF receptive fields are established by CF-specific plasticity. To test this idea, we used PF stimulation that was either paired or unpaired with CF activity. Conspicuously, unpaired PF stimulation that induced long-lasting, very large incr...

متن کامل

Noradrenergic Control of Associative Synaptic Plasticity by Selective Modulation of Instructive Signals

Synapses throughout the brain are modified through associative mechanisms in which one input provides an instructive signal for changes in the strength of a second coactivated input. In cerebellar Purkinje cells, climbing fiber synapses provide an instructive signal for plasticity at parallel fiber synapses. Here, we show that noradrenaline activates alpha2-adrenergic receptors to control short...

متن کامل

Climbing Fiber Signaling and Cerebellar Gain Control

The physiology of climbing fiber signals in cerebellar Purkinje cells has been studied since the early days of electrophysiology. Both the climbing fiber-evoked complex spike and the role of climbing fiber activity in the induction of long-term depression (LTD) at parallel fiber-Purkinje cell synapses have become hallmark features of cerebellar physiology. However, the key role of climbing fibe...

متن کامل

Input minimization: a model of cerebellar learning without climbing fiber error signals.

The cerebellum is critical for motor learning. Current cerebellar learning models follow the Marr/Albus paradigm, in which climbing fibers provide error signals that shape plastic synapses between parallel fibers and Purkinje cells. However, climbing fibers have slow and largely random discharge, and seem unlikely to provide error signals with resolution sufficient to guide cerebellar learning....

متن کامل

Storing covariance with nonlinearly interacting neurons.

A time-dependent, nonlinear model of neuronal interaction which was probabilistically analyzed in a previous article is shown here to be a natural generalization of the Hartline-Ratliff model of the Limulus retina. Although the primary physical variables in the model are the membrane potentials of neurons, the equations which govern the means and covariances of the membrane potentials are coupl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2004